Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Theoretical study of InN growth on Mn-stabilized zirconia (111) substrates

Identifieur interne : 000013 ( Main/Repository ); précédent : 000012; suivant : 000014

Theoretical study of InN growth on Mn-stabilized zirconia (111) substrates

Auteurs : RBID : Pascal:14-0094846

Descripteurs français

English descriptors

Abstract

The growth mechanism of InN on Mn-stabilized zirconia (MnSZ) (111) substrates was investigated using first-principles calculations based on density functional theory. The adsorption energies of indium and nitrogen atoms on MnSZ (111) surfaces were evaluated. Small differences in the adsorption energies of indium atoms on various adsorption sites indicate that the migration of the indium atoms on MnSZ (111) surfaces occurs readily. In contrast, larger differences in the adsorption energies of nitrogen atoms on various adsorption sites indicate that nitrogen atoms tend to stay on the stable site with the largest adsorption energy, which was identified as the Short Bridge Mn-O site. These results suggest that the first layer of InN films consists of a nitrogen layer, which leads to epitaxial relationships between InN (0001)//MnSZ (111) and InN [1120] //MnSZ [110]. This alignment makes the lattice mismatch between InN and MnSZ as small as 0.5%. In addition, a local density of state analysis revealed that the hybridization effect between the N2p and Mn3d orbitals plays a crucial role in determining the interface structure for the growth of InN on MnSZ (111) surfaces. Furthermore, it was found that an indium atom preferentially adsorbs at the center of three nitrogen atoms stacked on the MnSZ substrate, which results in the formation of In-polarity InN. Preferential formation of In-polarity InN is advantageous for device fabrication.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0094846

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Theoretical study of InN growth on Mn-stabilized zirconia (111) substrates</title>
<author>
<name>YAO GUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, The University of Tokyo</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 153-8505</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHIGERU INOUE</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, The University of Tokyo</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 153-8505</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kobayashi, Atsushi" uniqKey="Kobayashi A">Atsushi Kobayashi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, The University of Tokyo</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 153-8505</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ohta, Jitsuo" uniqKey="Ohta J">Jitsuo Ohta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, The University of Tokyo</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 153-8505</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fujioka, Hiroshi" uniqKey="Fujioka H">Hiroshi Fujioka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Industrial Science, The University of Tokyo</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Meguro-ku, Tokyo 153-8505</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CREST, Japan Science and Technology Corporation, 5 Sanbancho</s1>
<s2>Chiyoda, Tokyo 102-0075</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Chiyoda, Tokyo 102-0075</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0094846</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0094846 INIST</idno>
<idno type="RBID">Pascal:14-0094846</idno>
<idno type="wicri:Area/Main/Corpus">000042</idno>
<idno type="wicri:Area/Main/Repository">000013</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adsorption</term>
<term>Adsorption energy</term>
<term>Adsorption site</term>
<term>Arsenic additions</term>
<term>Atomic position</term>
<term>Crystallographic site</term>
<term>Density functional method</term>
<term>Density of states</term>
<term>Diffusion</term>
<term>Epitaxial layers</term>
<term>Epitaxy</term>
<term>Growth mechanism</term>
<term>Hybridization</term>
<term>III-V compound</term>
<term>Indium</term>
<term>Indium nitride</term>
<term>Interface structure</term>
<term>Mismatch lattice</term>
<term>Polarity</term>
<term>Stabilized zirconia</term>
<term>Theoretical study</term>
<term>Thin films</term>
<term>Zirconium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude théorique</term>
<term>Composé III-V</term>
<term>Mécanisme croissance</term>
<term>Méthode fonctionnelle densité</term>
<term>Energie adsorption</term>
<term>Indium</term>
<term>Site adsorption</term>
<term>Diffusion(transport)</term>
<term>Position atomique</term>
<term>Site cristallographique</term>
<term>Couche mince</term>
<term>Epitaxie</term>
<term>Couche épitaxique</term>
<term>Accommodation réseau</term>
<term>Nitrure d'indium</term>
<term>Zircone stabilisée</term>
<term>Oxyde de zirconium</term>
<term>Addition arsenic</term>
<term>Densité état</term>
<term>Hybridation</term>
<term>Structure interface</term>
<term>Polarité</term>
<term>Adsorption</term>
<term>InN</term>
<term>Substrat zircone</term>
<term>Substrat zircone stabilisée</term>
<term>In</term>
<term>Substrat indium</term>
<term>6855A</term>
<term>7350</term>
<term>7115M</term>
<term>6835F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The growth mechanism of InN on Mn-stabilized zirconia (MnSZ) (111) substrates was investigated using first-principles calculations based on density functional theory. The adsorption energies of indium and nitrogen atoms on MnSZ (111) surfaces were evaluated. Small differences in the adsorption energies of indium atoms on various adsorption sites indicate that the migration of the indium atoms on MnSZ (111) surfaces occurs readily. In contrast, larger differences in the adsorption energies of nitrogen atoms on various adsorption sites indicate that nitrogen atoms tend to stay on the stable site with the largest adsorption energy, which was identified as the Short Bridge Mn-O site. These results suggest that the first layer of InN films consists of a nitrogen layer, which leads to epitaxial relationships between InN (0001)//MnSZ (111) and InN [1120] //MnSZ [110]. This alignment makes the lattice mismatch between InN and MnSZ as small as 0.5%. In addition, a local density of state analysis revealed that the hybridization effect between the N2p and Mn3d orbitals plays a crucial role in determining the interface structure for the growth of InN on MnSZ (111) surfaces. Furthermore, it was found that an indium atom preferentially adsorbs at the center of three nitrogen atoms stacked on the MnSZ substrate, which results in the formation of In-polarity InN. Preferential formation of In-polarity InN is advantageous for device fabrication.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>551</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Theoretical study of InN growth on Mn-stabilized zirconia (111) substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YAO GUO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHIGERU INOUE</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOBAYASHI (Atsushi)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OHTA (Jitsuo)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FUJIOKA (Hiroshi)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Industrial Science, The University of Tokyo</s1>
<s2>Meguro-ku, Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CREST, Japan Science and Technology Corporation, 5 Sanbancho</s1>
<s2>Chiyoda, Tokyo 102-0075</s2>
<s3>JPN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>110-113</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000505786250210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0094846</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The growth mechanism of InN on Mn-stabilized zirconia (MnSZ) (111) substrates was investigated using first-principles calculations based on density functional theory. The adsorption energies of indium and nitrogen atoms on MnSZ (111) surfaces were evaluated. Small differences in the adsorption energies of indium atoms on various adsorption sites indicate that the migration of the indium atoms on MnSZ (111) surfaces occurs readily. In contrast, larger differences in the adsorption energies of nitrogen atoms on various adsorption sites indicate that nitrogen atoms tend to stay on the stable site with the largest adsorption energy, which was identified as the Short Bridge Mn-O site. These results suggest that the first layer of InN films consists of a nitrogen layer, which leads to epitaxial relationships between InN (0001)//MnSZ (111) and InN [1120] //MnSZ [110]. This alignment makes the lattice mismatch between InN and MnSZ as small as 0.5%. In addition, a local density of state analysis revealed that the hybridization effect between the N2p and Mn3d orbitals plays a crucial role in determining the interface structure for the growth of InN on MnSZ (111) surfaces. Furthermore, it was found that an indium atom preferentially adsorbs at the center of three nitrogen atoms stacked on the MnSZ substrate, which results in the formation of In-polarity InN. Preferential formation of In-polarity InN is advantageous for device fabrication.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C50</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H35F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Energie adsorption</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Adsorption energy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Energía adsorción</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Site adsorption</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Adsorption site</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Sitio adsorción</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Position atomique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Atomic position</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Posición atómica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Site cristallographique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Crystallographic site</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Sitio cristalográfico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Epitaxie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Epitaxy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Couche épitaxique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Epitaxial layers</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Zircone stabilisée</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Stabilized zirconia</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Zircona estabilizada</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde de zirconium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Zirconium oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Zirconio óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Addition arsenic</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Arsenic additions</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Densité état</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Density of states</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Densidad estado</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Hybridation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Hybridization</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Structure interface</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Interface structure</s0>
<s5>32</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Polarité</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Polarity</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Polaridad</s0>
<s5>33</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Adsorption</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Adsorption</s0>
<s5>34</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat zircone</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat zircone stabilisée</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Substrat indium</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6855A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7350</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7115M</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>6835F</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>132</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000013 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000013 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0094846
   |texte=   Theoretical study of InN growth on Mn-stabilized zirconia (111) substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024